Bacillus thuringiensis insecticidal three-domain Cry toxins: mode of action, insect resistance and consequences for crop protection.

نویسندگان

  • Liliana Pardo-López
  • Mario Soberón
  • Alejandra Bravo
چکیده

Bacillus thuringiensis bacteria are insect pathogens that produce different Cry and Cyt toxins to kill their hosts. Here we review the group of three-domain Cry (3d-Cry) toxins. Expression of these 3d-Cry toxins in transgenic crops has contributed to efficient control of insect pests and a reduction in the use of chemical insecticides. The mode of action of 3d-Cry toxins involves sequential interactions with several insect midgut proteins that facilitate the formation of an oligomeric structure and induce its insertion into the membrane, forming a pore that kills midgut cells. We review recent progress in our understanding of the mechanism of action of these Cry toxins and focus our attention on the different mechanisms of resistance that insects have evolved to counter their action, such as mutations in cadherin, APN and ABC transporter genes. Activity of Cry1AMod toxins, which are able to form toxin oligomers in the absence of receptors, against different resistant populations, including those affected in the ABC transporter and the role of dominant negative mutants as antitoxins, supports the hypothesis that toxin oligomerization is a limiting step in the Cry insecticidal activity. Knowledge of the action of 3d-Cry toxin and the resistance mechanisms to these toxins will set the basis for a rational design of novel toxins to overcome insect resistance, extending the useful lifespan of Cry toxins in insect control programs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of Bacillus thuringiensis Cry toxins insecticidal activity

Insecticidal Cry proteins produced by Bacillus thuringiensis are use worldwide in transgenic crops for efficient pest control. Among the family of Cry toxins, the three domain Cry family is the better characterized regarding their natural evolution leading to a large number of Cry proteins with similar structure, mode of action but different insect specificity. Also, this group is the better ch...

متن کامل

Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis.

Bacillus thuringiensis Cry toxins have been widely used in the control of insect pests either as spray products or expressed in transgenic crops. These proteins are pore-forming toxins with a complex mechanism of action that involves the sequential interaction with several toxin-receptors. Cry toxins are specific against susceptible larvae and although they are often highly effective, some inse...

متن کامل

Structure of Cry2Aa suggests an unexpected receptor binding epitope.

BACKGROUND Genetically modified (GM) crops that express insecticidal protein toxins are an integral part of modern agriculture. Proteins produced by Bacillus thuringiensis (Bt) during sporulation mediate the pathogenicity of Bt toward a spectrum of insect larvae whose breadth depends upon the Bt strain. These transmembrane channel-forming toxins are stored in Bt as crystalline inclusions called...

متن کامل

Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins

Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-formin...

متن کامل

Loop replacements with gut-binding peptides in Cry1Ab domain II enhanced toxicity against the brown planthopper, Nilaparvata lugens (Stål)

Bacillus thuringiensis (Bt) Cry toxins have been used widely in pest managements. However, Cry toxins are not effective against sap-sucking insects (Hemiptera), which limits the application of Bt for pest management. In order to extend the insecticidal spectrum of Bt toxins to the rice brown planthopper (BPH), Nilaparvata lugens, we modified Cry1Ab putative receptor binding domains with selecte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology reviews

دوره 37 1  شماره 

صفحات  -

تاریخ انتشار 2013